Modular Housings

Knick >

Universal high-voltage isolators.
Input signals from
$V_{\text {in }}= \pm 60 \mathrm{mV}$ up to
$V_{\text {in }}= \pm 100 \mathrm{~V}$.

The Task

In high-voltage systems unipolar or bipolar voltage signals ranging from 60 mV to 100 V , e.g. voltages across shunt resistors, must be galvanically isolated and converted to standard $\pm 20 \mathrm{~mA}$, $\pm 10 \mathrm{~V}$, or $4 \ldots 20 \mathrm{~mA}$ output signals.

The Problems

In the case of insufficient insulation the high voltages and harsh ambient conditions may impair the galvanic isolation. This can result in false signals or even personal injury or damage to the equipment. These risks have to be securely eliminated in the long term through isolation amplifiers that are specially suited for highvoltage applications.

The Solution

The VariTrans ${ }^{\circledR}$ P 41000 isolation amplifiers have been specially conceived for measurements of bipolar voltages from millivolts to volts. They reliably isolate high potentials at the input circuit.

The isolating distances are designed to withstand permanent voltages up to 3600 V AC/DC and fast transients up to 20 kV . Protection against electric shock is achieved through Safe Isolation to EN 61140 from input to output and power supply.

VariTrans® P 41000

The Housing

For the VariTrans ${ }^{\circledR}$ P 41000 highvoltage isolation amplifiers a new 22.5 mm wide modular housing is used. It is snapped on a standard DIN rail. The front panels of the adjustable models provide a rotary coding switch for selecting the ranges.

The Advantages

The VariTrans ${ }^{\circledR}$ P 41000 are available for any input voltages from $\pm 60 \mathrm{mV}$ to $\pm 100 \mathrm{~V}$. Analog unipolar and bipolar (standard) signals are available at the output: $\pm 20 \mathrm{~mA}, \pm 10 \mathrm{~V}$, and $4 \ldots 20 \mathrm{~mA}$ standard signals.

16 input/output signal combinations can easily be selected with
a rotary coding switch on the front of the device. Tedious onsite adjustment using a screwdriver, calibrator, and multimeter is no longer required. Drift problems due to instable trimming components (e. g. potentiometers) are avoided. Thanks to the easy scalability of the range selection, the devices can be flexibly suited to the individual needs of the application. Up to 16 customized signal combinations can be implemented in one device. The integrated 20 to 253 V AC/DC VariPower® broad-range power supply offers highest flexibility. This ensures trouble-free operation with alternating or direct voltages everywhere in the world and provides for maximum safety even in unstable power

High-Voltage Isolators / Isolation Amplifiers for Shunt Applications

Knick >

supply networks. Installation is safe and easy: Erroneous connection of mains supply is practically impossible. Expensive standstill times and repair work during the commissioning are prevented.

Vacuum encapsulation provides maximum long-term protection against aggressive environmental influences, shock, and vibrations and ensures the high disruptive strength required for working voltages up to 3600 V AC/DC. The isolation system meets the safety requirements of EN 61010-1 and EN 50124-1 (railway applications: insulation coordination).

The Technology

In this series, Knick relies on the newly developed TransShield ${ }^{\circledR}$ technology which compared to conventional designs enables very compact high-voltage transformers with low leakage. Thanks to the resulting space advantage, the P 41000 shunt isolators can be installed in an only 22.5 mm wide modular housing.

Another substantial advantage of this technology: High transient overvoltages (common-mode interference) are reliably isolated and cause hardly any measurement errors at the output.

wem 5 years!

Defects occurring within 5 years from delivery are remedied free of charge at our works (carriage and insurance paid by sender).

To guarantee the specified isolation capabilities, the devices are subjected to routine testing with 15 kV AC (fixed-range models) or 10 kV AC (switchable models) on a 100 \% basis.
Circuit design and device construction ensure excellent transmission characteristics, which are reflected in zero stability, linearity, long-term stability, frequency response, and immunity to interference. A cutoff frequency $>5 \mathrm{kHz}$ and rise time $<0.1 \mathrm{~ms}$ guarantee distortion-free signal conversion. The output signal follows fast changes in the input signal almost without delay.

Modular Housings

VariTrans ${ }^{\circledR}$ P 41000

The Facts

Universal high-voltage isolators for conversion of voltages, e. g. in shunt applications, from $\pm 60 \mathrm{mV}$ up to $\pm 100 \mathrm{~V}$ to impressed $\pm 20 \mathrm{~mA}, \pm 10 \mathrm{~V}$, or 4 ... 20 mA output signals.	Excellent transmission properties: - Gain error < 0.1 \% - Cutoff frequency $>5 \mathrm{kHz}$ (low-pass filtering possible) - Rise time T90 < 0.1 ms
New TransShield ${ }^{\circledR}$ technology	Virtually no influence from common-mode voltages: CMRR > 150 dB
	High immunity to transient interferences: T-CMRR > 115 dB
Working voltages up to 3600 V AC/DC	
Protection against electric shock through Safe Isolation up to	Very high flexibility due to - calibrated selection of up to 16 input/output ranges (up to 2200 V working voltage) - up to 16 customer-specific ranges - 20 V to 253 V AC/DC broadrange power supply unit
1800 V AC/DC according to EN 61140	
Test voltages up to 15 kV AC	

Reliable function even with unstable supply

No damage in the case of erroneous power connection

Switchable models

minimize required device variants and save stockkeeping costs

Robust

thanks to vacuum encapsulation

Suitable for DC railway systems

up to 3000 V DC
Mechanically stable
for operation on ships, rail vehicles and land crafts

5-year warranty

High-Voltage Isolators / Isolation Amplifiers for Shunt Applications

Knick >
\square Product Line
Devices

Power supply

[^0]1) Input $\pm 10 \mathrm{~V}$ switchable only with output $\pm 10 \mathrm{~V}$
2) Please specify desired setting when ordering

Modular Housings

VariTrans ${ }^{\circledR}$ P 41000

■ Specifications
Input data
Inputs
Input resistance
Input capacitance
\square

Overload

P 41000 D1	$\pm 60 \mathrm{mV}, \pm 90 \mathrm{mV}, \pm 150 \mathrm{mV}, \pm 300 \mathrm{mV}$, Calibrated selection, $\pm 500 \mathrm{mV}, \pm 10 \mathrm{~V}$, (bipolar) factory setting: $\pm 10 \mathrm{~V}$
P 41000 D1-nnnn	60 mV to 100 V , unipolar/bipolar $\quad \begin{aligned} & 1 \text { to } 16 \text { switchable calibrated } \\ & \text { ranges to customer requirements }\end{aligned}$
P 41100 D1-nnnn	60 mV to 100 V , unipolar/bipolar Fixed settings, to customer requirements
Range $\leq 0.5 \mathrm{~V}$	Approx. 100 kohms
Range $>0.5 \mathrm{~V}$	> 2 Mohms
Range $\leq 0.5 \mathrm{~V}$	Approx. 10 nF
Range $>0.5 \mathrm{~V}$	Approx. 1 nF
Range $\leq 10 \mathrm{~V}$	Limited by 36 V suppressor diode, permitted continuous current $=20 \mathrm{~mA}$
Range > 10 V	Limited by 150 V suppressor diode, permitted continuous current $=3 \mathrm{~mA}$

Output data

Outputs 1 and 2	$\begin{aligned} & \text { P } 41000 \text { D1 } \\ & \text { P } 41000 \text { D1-nnnn } \\ & \text { P } 41100 \text { D1-nnnn } \end{aligned}$	$20 \mathrm{~mA}, 10 \mathrm{~V}$, unipolar/bipolar and $4 \ldots 20 \mathrm{~mA}$ $20 \mathrm{~mA}, 10 \mathrm{~V}$, unipolar/bipolar and/or 4 ... 20 mA $20 \mathrm{~mA}, 10 \mathrm{~V}$, unipolar/bipolar or $4 \ldots 20 \mathrm{~mA}$	Calibrated selection, factory setting: $\pm 10 \mathrm{~V}$ Calibrated selection, to customer requirements Fixed settings, to customer requirements
Offset	Factory setting up to ± 150 \%		
Load	With output current $\leq 12 \mathrm{~V}$ (600 ohms at 20 mA) With output voltage $\leq 10 \mathrm{~mA}$ (1000 ohms at 10 V)		
Offset	$<20 \mu \mathrm{~A}$ or 10 mV		
Residual ripple	$<10 \mathrm{mV}_{\text {rms }}$		
Transmission behavior			
Gain error	< 0.1 \% meas. val.		
Cutoff frequency (-3 dB)	> 5 kHz ; optional factory setting: $<10 \mathrm{~Hz}$		
Common mode rejection ratio	Input range $\leq 1 \mathrm{~V}$	CMRR $^{1)}$ Appro T-(MRR	$\begin{aligned} & 50 \mathrm{~dB}(\mathrm{DC} / \mathrm{AC}: 50 \mathrm{~Hz}) \\ & 15 \mathrm{~dB}(1000 \mathrm{~V}, \mathrm{tr}=1 \mu \mathrm{~s}) \\ & \mathrm{x} .150 \mathrm{~dB} \\ & \text { : approx. } 120 \mathrm{~dB} \end{aligned}$
Temperature coefficient ${ }^{3}$	< 0.005 \%/K		

[^1]
High-Voltage Isolators / Isolation Amplifiers for Shunt Applications

Knick >

Specifications (continued)
Power supply

Power supply
20 ... 253 V AC/DC
AC 48 ... 62 Hz , approx. 2 VA; DC approx. 0.9 W
Isolation
Galvanic isolation

Test voltage

Working voltage
(basic insulation) to
EN 61010-1

Rated

isolation voltage to
EN 50124-1

Protection against electric shock

Standards and approvals

$\boxed{E M C 4)}$	Product standard:	
	Emitted interference:	EN 61326
	Immunity to interference:	Industry

[^2]
Modular Housings

VariTrans ${ }^{\circledR}$ P 41000

Specifications (continued)

Other data

MTBF5)	Approx. 96 years	
Ambient temperature ${ }^{6}$	Operation:	$-10 \ldots+70^{\circ} \mathrm{C}$
	Transport and storage:	$-40 \ldots+85^{\circ} \mathrm{C}$
Design	Modular housing	Housing width D1: 22.5 mm
	With screw terminals	See dimension drawings for further measurements
Ingress protection	Housing IP 40, terminals IP 20	
Mounting	With snap-on mounting for 35 mm top hat rail according to EN 60715	
Weight	Approx. 180 g	

5) Mean Time Between Failures - MTBF - according to EN 61709 (SN 29500). Conditions: stationary operation in well-kept rooms, average ambient temperature $40^{\circ} \mathrm{C}$, no ventilation, continuous operation
6) Extended temperature range $-25 \ldots+85^{\circ} \mathrm{C}$ on request

■ Application Example
Current measurement via shunt resistor

High-Voltage Isolators / Isolation Amplifiers for Shunt Applications

Knick >

Block Diagram

■ Dimension Drawings and Terminal Assignments

Terminal assignments:

5 Voltage input + (>1 V ... 100 V)
6 Voltage input + ($60 \ldots 1000 \mathrm{mV}$)
7 Input-
11 Power supply AC/DC
12 Power supply AC/DC
13 Current output +
14 Voltage output +
15 Current output -
16 Voltage output -

M 3.5 connecting screws with
self-releasing terminal housing
Conductor cross-section
max. $1 \times 4 \mathrm{~mm}^{2}$ solid
or $1 \times 2.5 \mathrm{~mm}^{2}$ stranded wire with ferrule,
$\mathrm{min} .1 \times 0.5 \mathrm{~mm}^{2}$ solid or stranded wire with ferrule

For switchable models and voltage output: Place jumper across terminals 13 and 14

[^0]: 20 ... 253 V AC/DC

[^1]: 1) Common-Mode Rejection Ratio $=\frac{\text { Differential voltage gain }}{\text { Common-mode voltage gain }}$
 2) Transient Common-Mode Rejection Ratio $=\frac{\text { Differential DC gain }}{\text { Common-mode transient }}$
 3) Reference temperature for TC specifications $23^{\circ} \mathrm{C}$, average $T C$ is specified
[^2]: 4) Slight deviations are possible while there is interference
